arXiv:2409.13654v2 [cs.LG] 7 Jun 2025

A Novel Neural Filter to Improve Accuracy of
Neural Network Models of Dynamic Systems

Parham Oveissi, Turibius Rozario, Ankit Goel

Abstract— The application of neural networks in mod-
eling dynamic systems has become prominent due to their
ability to estimate complex nonlinear functions. Despite
their effectiveness, neural networks face challenges in long-
term predictions, where the prediction error diverges over
time, thus degrading their accuracy. This paper presents
a neural filter to enhance the accuracy of long-term state
predictions of neural network-based models of dynamic
systems. Motivated by the extended Kalman filter, the
neural filter combines the neural network state predic-
tions with the measurements from the physical system to
improve the estimated state’s accuracy. The neural filter’s
improvements in prediction accuracy are demonstrated
through applications to four nonlinear dynamical systems.
Numerical experiments show that the neural filter signifi-
cantly improves prediction accuracy and bounds the state
estimate covariance, outperforming the neural network
predictions. Furthermore, it is also shown that the accuracy
of a poorly trained neural network model can be improved
to the same level as that of an adequately trained neural
network model, potentially decreasing the training cost and
required data to train a neural network.

keywords: neural networks, dynamical systems, neu-
ral network modeling, state estimation.

1. INTRODUCTION

The use of neural networks has surged due to ad-
vances in computational power and extensive research
within the machine learning community. Neural net-
works, with their inherently nonlinear activation func-
tions, are adept at estimating complex nonlinear func-
tions [1], [2], making them highly suitable for modeling
dynamic systems and predicting future states. These
capabilities have broad applications, such as modeling
nonlinear oscillators [3], controlling nonlinear dynam-
ical systems [4], [5], predicting weather phenomena
[6], and enhancing medical diagnostics [7]. Modeling
dynamic systems is crucial across various engineering
and scientific disciplines. Neural networks offer a pow-
erful alternative to traditional parametric methods by

Parham Oveissi is a graduate student in the Department of Me-
chanical Engineering, University of Maryland, Baltimore County, 1000
Hilltop Circle, Baltimore, MD 21250. parhamol@umbc.edu

Turibius Rozario is an undergraduate student and a Meyerhoff
Scholar in the Department of Mechanical Engineering, University
of Maryland, Baltimore County, 1000 Hilltop Circle, Baltimore, MD
21250. s175@umbc.edu

Ankit Goel is an Assistant Professor in the Department of Me-
chanical Engineering, University of Maryland, Baltimore County,1000
Hilltop Circle, Baltimore, MD 21250. ankgoel@umbc.edu

learning complex system behaviors directly from data.
For instance, a procedure developed for identifying non-
linear dynamic systems using artificial neural networks
demonstrated the capability to effectively predict the
response of a damped Duffing oscillator under vary-
ing excitations, highlighting the neural network’s high-
fidelity modeling potential [3]. [4] introduced models for
nonlinear dynamical systems identification and control,
emphasizing the feasibility of neural networks in han-
dling more complex systems and introducing a combined
linear-neural network controller structure. More recently,
universal approximation property of neural networks has
been leveraged to learn functions from small datasets.
A significant reduction in generalization error and high-
order error convergence in dynamic systems and PDEs
was reported in [8]. Physics-informed neural networks
(PINNs) that integrate physical laws into neural network
training to ensure that the models adhere to underlying
physical principles have also been explored [9].

Despite neural networks’ impressive capabilities, a
significant challenge arises in the context of long-term
predictions, where the error between the true system
behavior and the neural network approximation tends
to accumulate over time. To address the issue of long-
term prediction errors, various approaches have been
proposed. A technique based on regularization to im-
prove robustness and reduce error accumulation was
investigated in [10]. Recurrent neural networks have
been investigated to capture temporal dependencies to
reduce error accumulation for both interpolation and
extrapolation tasks [11], [12].

The key reason for the prediction error’s divergence is
that the design and training of the neural network-based
model do not stabilize the state error dynamics. Moti-
vated by the Kalman filter [13], where a feedback signal
from the physical system stabilizes the error dynamics,
this paper presents a neural filter to arrest the divergence
of the error in the neural network state predictions. The
main contribution of this work is thus the extension of
the extended Kalman filter [14], [15] to the neural filter
and the demonstration of the improvement in the long-
term accuracy of the neural filter state predictions.

The paper is organized as follows. Section II formu-
lates the state-estimation problem and presents the neu-
ral filter. Section III applies the neural filter to estimate

https://arxiv.org/abs/2409.13654v2

states in four typical dynamical systems. Finally, Section
IV summarizes the paper.

II. PROBLEM FORMULATION

This section formulates notation and terminology as-
sociated with the state-estimation problem and presents
the neural filter. Consider the nonlinear system

Tr1 = f(Th, uk) + wp, (1
Yk = g(xr) + vk, 2)

where, for all £ > 0, xy, is the state, uy, is the input to the
system, y is the measured output of the system, f, g,
are real-valued vector functions, wy ~ N (0, Q) is the
process noise, vy ~ N (0, Ry,) is the measurement noise,
and @i and Ry, are process and measurement covariance
matrices, respectively. The objective is to propagate the
system states xj by approximating the function f with a
neural network, and then correct these predictions using
the available measurements y;, from the system. In this
work, we assume that the function g is known.

A. Neural Network Model

Consider a dynamic system
Ax(t) = F(a(t), u(t)), ©)

where = and u are the state of the system and the
input to the system, respectively, F is the dynamics
of the system, and the operator A is either a derivative
or a forward-shift operator, that is, in continuous-time
systems, Az = & and, in discrete-time systems, \x(t) =
x(t + 1). The objective is approximate the state of (3)
with a discrete dynamic system

i?k+1 = NN(ik,uk), (4)

where 7y, is the estimated state of the system and NN
denotes a neural-network approximation of the system,
which is constructed as shown below. Note that £ is the
iteration number and is related to continuous time ¢ as
t = kT, where Ty is the discretization timestep.

To generate the training data to construct the neural-
network model, we solve (3) from ¢ = 0 to ¢ = T5. For
example, in the case of continuous time system, note
that

Ts
x(Ts) = x(0) —|—/0 F(x(7),u(r))dr. 5)

The training data consists of randomly generated sam-
ples of x(0) and u(0) and the corresponding z(T5),
computed using (5). In this work, we use MATLAB’s
ode45 routine to compute z(7y). The trained neural
network, denoted by NN(z), can thus be used to
propagate the state at a time instant ¢ to ¢ 4+ 75 using

.

In this work, we use the MATLAB routine dlnetwork
to define the neural network architecture. To train the
neural-network model NN with the training data, which
includes the input data {x(0),%(0)} and the output
data {z(T)}, we employ the Adam optimizer using the
MATLAB routine adamupdate in a mini-batch training
setup. A small portion of the training data is reserved
as a validation dataset throughout the training process.

B. Neural Filter

Let NN(z,u) be a neural network approximation of
the function f. Then, the neural filter is

Tk = NN (Zppp, ur), (6)
Tk = g + Kiogr (ke — 9@g1p))s (D)

where 41|, is the prior estimate at step k+1, Zj 1)p41
is the posterior estimate at step k + 1, and the neural
filtering correction gain Ky is given by

K1 = Pe11Crp1 (Crs1 Poy16Cryr + Riga) ™

®)
where the prior covariance matrix Py is given by
Priaje = APy AL + Qu,)]

and the state transition matrix A, and the measurement
matrix C}, are given by

_ 9
Oz

_ONN
T oz ’

Tk |k Uk

Ay, Ck (10)

LTk|k Uk
The computation of the Jacobian of a neural network is
described in Appendix V-A.

Finally, the posterior covariance matrix P 1|41 18
given by

(1)

Remark 2.1: Note that, since the neural filter is moti-
vated by the extended Kalman filter, the matrices Py 1)
and Pjyqx41 are similar to the prior and posterior
covariance matrices in EKF. Therefore,

Pryipprr = (I = Ki41Ck1) Py i

12)
13)

~ T
Prae ~ Elext1k€t)n)s
~ T
Priajer1 = Elentijeri€ppsls

where the prior error ey q, and the posterior error
€k+1|k+1 are defined as

A

Cht1lk = Thtl — Thiilks (14)
A

€kt1lk+1 = Thtl — Tht1lkt+1- (15)

Remark 2.2: Since Py, is the covariance of the pos-

terior state-estimation error, that is, E[ek“ce;f‘ .o the

trace of Py, is approximately equal to the square of

the 2-norm of the posterior state-estimation error, that
iS, E[e;flkek‘k.]

https://www.mathworks.com/help/matlab/ref/ode45.html
https://www.mathworks.com/help/deeplearning/ref/dlnetwork.html#d126e70205
https://www.mathworks.com/help/deeplearning/ref/adamupdate.html

Figure 1 shows the neural filter architecture, which
incorporates the available measurements from the phys-
ical system to improve the prediction accuracy of the
neural network-based model of the physical system.

Physical |
Uk System

(2

Neural network |Tx+11%

Model (6) 1
O
\ 9

Neural Filter
Correction (7)

Output Yk
Model)@

:i‘k;-&-l\k;-&-l

Neural Filter
Fig. 1: Neural filter architecture.

III. NUMERICAL EXPERIMENTS

This section presents several case studies to demon-
strate the performance of the neural filter. In particular,
we consider the simple pendulum, the Van der Pol
oscillator, the Lorenz system, and the double pendulum
system to demonstrate that the neural filter maintains
prediction accuracy over a long horizon. Note that the
Lorenz system and the double pendulum system are
chaotic, making long-term predictions especially chal-
lenging due to their sensitivity to initial conditions,
where small changes can lead to vastly different behav-
iors [16].

A. Simple Pendulum

Consider the simple pendulum

06 + gsind = 0. (16)
. A T .

Defining = [# 0] , the simple pendulum (16) can

be written in the state-space form (3), where

f(a:)é{ g2 }

— 9 sin(xy) an

The output is assumed to be a noisy measurement of the
angle 6, that is,

ye=[1 0]k + g, (18)

where vy ~ N(0,0215) represents zero-mean Gaussian
noise. In this example, we set o, = 0.1.

The training data consists of 15,000 samples of
z(0) € U[J[T_/ g g]/ 2l Using MATLAB's ode4s
routine, x(0.1) is computed according to (5). In this
work, we use 80 % of the data to train the model, and

the remaining 20 % are used for validation during the
training process.

The neural network architecture used to approximate
the simple pendulum is shown in Figure 2. In particular,
the neural network NN; consists of an input layer with
a dimension of 2, a single hidden layer containing 10
neurons, and an output layer with a dimension of 2.
The hidden layer uses the rectified linear unit (ReLU)
activation function, while the output layer uses a linear
activation function. The Adam optimizer is used for
training the neural network. Training is performed with
a batch size of 32, and validation is conducted every 30
iterations. To assess the robustness of the neural filter
against variations in neural network complexity, we also
consider a significantly simpler architecture NNs. This
network consists of an input layer with a dimension of 2,
a single hidden layer with 2 neurons, and an output layer
with a dimension of 2. The hidden layer employs the
ReLU activation function, while the output layer utilizes
a linear activation function. Figure 3 shows the smoothed
training and validation loss on a logarithmic scale during
the training process for both trained networks NN; and
NNo.

Fig. 2: Neural network architecture used to approximate the simple
pendulum system.

NN, Training Loss

NN_ Validation Loss

= = =NN_ Training Loss 1

= = =NN

1
1
2
, Validation Loss

N o—— —

05 1 15 2 25 3 35
Iteration x10*
Fig. 3: Simple pendulum. Training and validation loss on a logarith-
mic scale to approximate the simple pendulum system.

Next, the trained neural networks and the correspond-

https://www.mathworks.com/help/matlab/ref/ode45.html

ing neural filters are used to predict the state of the pen-
dulum system. In particular, we set z(0) = [1}T.
In both of the neural filter, we set P(0) = 10~% x I,
where I is the 2 by 2 identity matrix and Zgo = 0.
Note that Zgg = O reflects the absence of knowledge
of the state of the dynamic system in the neural filter.
However, since the neural network models NN; and
N N5 have no external correction, we initialize them
with the same initial conditions as the true system, that
is, Zo = 0 in the neural network model. Figures 4 and
5 show the predicted states using the neural network
(subfigures in the left column) and the corresponding
neural filter (subfigures in the right column) using NN;

and NNjy, respectively.

Note that, in both cases, the state predictions using
the neural network degrade over time, as shown by
the increasing state error norm ||e;|| and the trace of
the corresponding state covariance tr Py ;. On the other
hand, the state predictions using the neural filter remain
accurate over time, as shown by the bounded state error
norm ||e|x|| and the trace of the corresponding state
covariance tr Py;. Furthermore, the NN; and N N3
estimates diverge even with the correct initialization,
whereas the neural filter estimates converge despite the
complete lack of the system’s initial state. Although NNg
is a much simpler model and shows noticeably poorer
performance than NNi in open-loop state estimation,
the neural filter in both instances operates quite simi-
larly.

NN, Neural Filter

— @1 —Ly gk —x1) — L1k

VAR

— Ty — Dok

— ok —Ta ke

3
10 —[lexrl [—tr(Pyy)

107
3 ;
10 —lexpl” —tr(Pe)

0 100 200 300 400 500 O 100 200 300 400 500

k k

Fig. 4: Simple pendulum. State predictions using the neural network
and the neural filter using NN7y.

B. Van Der Pol

Consider the Van Der Pol oscillator

G—p(l—q*)i+q=0. (19)

NN, Neural Filter

— @1 — L1k

—Ty) — Ty
— Ty — Lo gk

AR

—|lexul? —tr(Piy)

ety

0 100 200 300 400 500 O 100 200 300 400 500
k k
Fig. 5: Simple pendulum. State predictions using the neural network
and the neural filter using NNo.

3
10 —lexel 2 — e (Pie)

Defining x = [q cﬂT , the Van der Pol oscillator (19)
can be written in the state-space form (3), where

L T2
f((E) - [L(l _ IIQ)I2 -

The measurement model for this example is defined
as follows

(20)

ye=[1 0]k +vg, (21)

where vy ~ N(0,0213) represents zero-mean Gaussian
noise. For this example, we specify o, = 0.1.
The training data consists of 30,000 samples of

z(0) € {U[_&ﬂ . Using MATLAB’s ode45 routine,

Ul-5,5
2(0.1) is coEnpute]d according to (5). In this work, we use
80 % of the data to train the model, and the remaining
20 % are used for validation during the training process.

The neural network architecture used to approximate
the Van der Pol oscillator is shown in Figure 6. In
particular, the neural network consists of an input layer
with a dimension of 2, two hidden layers containing
10 neurons each, and an output layer with a dimension
of 2. Both hidden layers use the rectified linear unit
(ReLU) activation function, while the output layer uses
a linear activation function. The Adam optimizer is used
for training the neural network. Training is performed
with a batch size of 32, and validation is conducted every
30 iterations. Figure 7 shows the smoothed training and
validation loss on logarithmic scale during the training
process.

Next, the trained neural network and the neural filter
are used to predict the state of the Van der Pol oscillator.
In particular, we set z(0) = [2 1]T. In the neural
filter, we set P(0) = 10~% x Iy, where I is the 2 by
2 identity matrix. Figure 8 shows the predicted states
using the neural network (subfigures in the left column)
and the neural filter (subfigures in the right column).
Note that the state predictions using the neural network

https://www.mathworks.com/help/matlab/ref/ode45.html

1’1(0) / xl(O.l)

x2(0) 5132(0.1)

Fig. 6: Neural network architecture used to approximate the Van der
Pol oscillator.

——Training Loss
——Validation Loss

1 2 3 4 5 6 7
Iteration <104

Fig. 7: Van der Pol oscillator. Smoothed training and validation loss
on logarithmic scale during the training process.

degrade over time, as shown by the increasing state
error norm ||eyx|| and the trace of the corresponding
state covariance tr Py. On the other hand, the state
predictions using the neural filter remain accurate over
time, as shown by the bounded state error norm |[ey ||
and the trace of the corresponding state covariance
tr P, k|k-

C. Lorenz System

Consider the Lorenz system
W= U(y - ’LU),
y=wlp—2) -y,

z=wy — Bz. (22)

Defining z = [w Y Z]T , the Lorenz system (22) can
be written in the state-space form (3), where

A 0'(&[:2 — ,Tl)
f(z) = |x1(p — 23) — 2 (23)
122 — B3

The measurement model for this example is defined
as follows

Yk = [1 0 O} T + Vg, 24)

NN Neural Filter

—xy) — Tk —T1) — T

T

— Ty — Lo gk — Ty — Lo ki

— [lexps|I* —tr(Py)

— [lexll? —tr(Py)

0 100 200 300 400 500 O 100 200 300 400 500

k k

Fig. 8: Van der Pol oscillator. State predictions using the neural
network and the neural filter.

where vy, ~ N(0,0213) represents zero-mean Gaussian
noise. For this example, we specify o, = 0.1.
The training data consists of 100,000 samples of

U|-15,15]
z(0) € |U[-15,15]| . Using MATLAB’s ode45 rou-
U[-15,15]

tine, x(0.01) is computed according to (5). In this
work, we use 80 % of the data to train the model, and
the remaining 20 % are used for validation during the
training process.

The neural network architecture used to approximate
the Lorenz system is shown in Figure 9. In particular,
the neural network consists of an input layer with
a dimension of 3, three hidden layers containing 10
neurons each, and an output layer with a dimension
of 3. All the hidden layers use the rectified linear unit
(ReLU) activation function, while the output layer uses a
linear activation function. The Adam optimizer is used
for training the neural network. Training is performed
with a batch size of 32, and validation is conducted every
30 iterations. Figure 10 shows the smoothed training and
validation loss on logarithmic scale during the training
process.

Next, the trained neural network and the neural filter
are used to predict the state of the Lorenz system. In
particular, we set z(0) = [—6.13 1.78 1.67]T. In
the neural filter, we set P(0) = 10~* x I3, where
I3 is the 3 by 3 identity matrix. Figure 11 shows the
predicted states using the neural network (subfigures
in the left column) and the neural filter (subfigures in
the right column). Note that the state predictions using
the neural network degrade over time, as shown by
the increasing state error norm ||e;|| and the trace of
the corresponding state covariance tr Py ;.. On the other
hand, the state predictions using the neural filter remain
accurate over time, as shown by the bounded state error
norm |[|eg|x|| and the trace of the corresponding state
covariance tr Pyy,.

https://www.mathworks.com/help/matlab/ref/ode45.html

Fig. 9: Neural network architecture used to approximate the Lorenz
system.

100 | ——Training Loss | |
— Validation Loss
wn
& a1l |
3 10
102 ¢ 3
0.5 1 1.5 2
Iteration %10°

Fig. 10: Lorenz system. Smoothed training and validation loss on
logarithmic scale during the training process.

D. Double Inverted Pendulum System

As shown in Figure 12, a planar double simple
pendulum consists of particles y; and y» with masses
my and me, respectively. The particle y; is connected
to a frictionless pin joint at the point w in the ceiling by
means of the massless link £ with length ¢;, and the
particle ys is connected by a frictionless pin joint at y;
to the first link by means of the massless link Lo with
length /5. The external torque 7o« is applied to link L.

Y2 '
Fig. 12: Planar double simple pendulum.

NN Neural Filter

10
-10 VYN VY Y — T —Z 1k

x1
o

20
2
g 0] B
-20 — Lok —Ta i T2k T T2k
50
40
30
20)
10 — a3k —D3 k[T3k T3k
107 "
103 — el —tr (P
1
1100-1 — lewnll? —tr (P Y
0 500 1000 0 500 1000
k k

Fig. 11: Lorenz system. State predictions using the neural network
and the neural filter.

The equations of motion of the double pendulum are

(ma + ma) 030, + malils(cos §)fz = malyla(sin ¢)03
— (m1 + ma2)gly sin 01 + Toxt,
(25)
61 (COS ¢)91 + ézéz = —él (sin gb)Gf — gsin 92,
(26)

A
where ¢ = 65 — 6.
The equations of motion can be written compactly as

M(0)6+D(0.6) =T, @7)
where 0 = [91] and
02
& [(ma +m1)6; malila(cos @)
M) = {1(cos @) 0y ; (28)
D(9,6) 2 [—mal1ls(sin ¢)63 + (my + ma)gly sin by
7 1(sin ¢)07 + gsin by ’
(29)
A _Text
=10] : (30)

The measurement model for this example is defined

as follows
1 0 0 0
w00 Jaru

0010 31

where vy ~ N(0,021,) represents zero-mean Gaussian
noise. For this example, we specify o, = 0.01.

The training data consists of 200,000 samples of
Ul—7/2,7/2)
U[—-0.5,0.5]
U[-m/2,7/2]
U[—0.5,0.5]
routine, 2(0.01) is computed according to (5) assuming
Text = 0. In this work, we use 80 % of the data to
train the model, and the remaining 20 % are used for
validation during the training process.

z(0) . Using MATLAB’s ode45

https://www.mathworks.com/help/matlab/ref/ode45.html

The neural network architecture used to approximate
the double pendulum system is shown in Figure 13. In
particular, the neural network consists of an input layer
with a dimension of 4, four hidden layers containing
10 neurons each, and an output layer with a dimension
of 4. All the hidden layers use the rectified linear unit
(ReLU) activation function, while the output layer uses a
linear activation function. The Adam optimizer is used
for training the neural network. Training is performed
with a batch size of 32, and validation is conducted every
30 iterations. Figure 14 shows the smoothed training and
validation loss on a logarithmic scale during the training
process.

/
Fig. 13: Neural network architecture used to approximate the double
pendulum system.

——Training Loss
— Validation Loss
102+ 3

Loss

1073 ¢ :

0.5 1 1.5 2
Iteration x10°

Fig. 14: Double pendulum. Smoothed training and validation loss on
logarithmic scale during the training process.

Next, the trained neural network and the neu-
ral filter are used to predict the state of the dou-
ble pendulum system. In particular, we set x(0) =
[—0.235 0.267 —0.435 —0.301]T In the neural
filter, we set P(0) = 10~* x I, where I, is the 4 by
4 identity matrix. Figure 15 shows the predicted states
using the neural network (subfigures in the left column)
and the neural filter (subfigures in the right column).
Note that the state predictions using the neural network
degrade over time, as shown by the increasing state
error norm |[e|x|| and the trace of the corresponding

state covariance tr Py. On the other hand, the state
predictions using the neural filter remain accurate over
time, as shown by the bounded state error norm ey ||
and the trace of the corresponding state covariance
tr P, K|k-

NN Neural Filter

05—z — &1k

& 0 .
0.5 — T Ty gk
% — Ty —Ta ki

o~

80 L
-1 T—To 5 Lo,k
0.5

@ 0

8 050 & >) .
LT3k — T3k i L3 klk,

5

3

-1/\,va~f\/wwv~ .
1%;2 —|fexell® —tr(Pii) — llewnll? —tr(Py

0 500 1000 0 500 1000

k k

Fig. 15: Double pendulum. State predictions using the neural network
and the neural filter.

IV. CONCLUSIONS

This paper introduced a novel neural filter to improve
the accuracy of state predictions using neural network-
based models of dynamical systems. Motivated by the
extended Kalman filter, the neural filter is constructed
using the neural network-based approximation of the
dynamical system and augmenting the state prediction
by a correction step. The performance of the neural filter
is investigated using four nonlinear dynamical systems.
In particular, a simple pendulum, a Van der Pol oscilla-
tor, Lorenz system, and a double pendulum system are
considered to demonstrate the application of the neural
filter. In each case, the states predicted by the neural
filter remain close to the true states, whereas the state
estimates provided by the neural network model alone
diverge. Moreover, unlike the neural network model,
which requires precise initialization, the neural filter
state estimates latch onto true states even with zero
initialization. Furthermore, the covariance of the state
estimate given by the neural filter remains bounded,
whereas the covariance of the state estimate given by
the neural network model diverges.

V. APPENDIX
A. Jacobian of the Neural Network

Following the notation presented in [17], the output
of the neural network is given by

Yy = NN(x,@l,...,Gn,@n+1)
=0, 1 No(Nn—1(. .. (N1(2,01)),0,-1),0,), (32)

where Ni, No,..., N, are the n neural layers of the
neural network and {©,}?_, are the neural gains in each
layer.

To compute the Jacobian of the neural network func-
tion NN with respect to the input z, the output of
a neural network function is written using a recursive
formula as shown below. By denoting the input and the
output of the ith neural layer by z; and x;4 1, it follows
that, for i € {1,2,...,n},

Tit1 = Ni(z;,0;), (33)

A
where ©; € R%: % Note that ;1 = x. The output of

the network is finally given by
Y= S(xn-l-l) = ®E+1xn+la (34)

where ©,41 € R+l Using the chain rule, it
follows that

ONN 9y 0Oy Oxipy1 Ox; 0xo
ox - ox - 6wi+1 (91'1 6$i_1 (91'1
ON; ON
Y 1
=or,, RREE (35)

More details about computing the gradients of arbitrarily
connected neural networks can be found in [18].

REFERENCES

[1] L. Song, J. Fan, D.-R. Chen, and D.-X. Zhou,
“Approximation of nonlinear functionals using
deep relu networks,” Journal of Fourier Analysis
and Applications, vol. 29, no. 4, p. 50, 2023.

[2] I. Higgins, “Generalizing universal function ap-
proximators,” Nature Machine Intelligence, vol. 3,
no. 3, pp. 192-193, 2021.

[3] S. Masri, A. Chassiakos, and T. Caughey, “Iden-
tification of nonlinear dynamic systems using
neural networks,” 1993.

[4] K. S. Narendra and K. Parthasarathy, “Neural
networks and dynamical systems,” International
Journal of Approximate Reasoning, vol. 6, no. 2,
pp. 109-131, 1992.

[5] Y. Y. Chee, P. Oveissi, J. Paredes, D. S. Bern-
stein, and A. Goel, “Performance comparison of
adaptive autopilot architectures for multicopter
stabilization and trajectory tracking,” in AIAA
SCITECH 2024 Forum, 2024, p. 1391.

[6] K. Lin, X. Li, Y. Ye, er al, “Spherical neural
operator network for global weather prediction,”
IEEE Transactions on Circuits and Systems for
Video Technology, 2023.

[10]

[11]

[15]

L. N. Yasnitsky, A. A. Dumler, F. M. Cherepanov,
V. L. Yasnitsky, and N. A. Uteva, “Capabilities of
neural network technologies for extracting new
medical knowledge and enhancing precise deci-
sion making for patients,” Expert Review of Pre-
cision Medicine and Drug Development, vol. 7,
no. 1, pp. 70-78, 2022.

L. Lu, P. Jin, and G. E. Karniadakis, “Deep-
onet: Learning nonlinear operators for identifying
differential equations based on the universal ap-
proximation theorem of operators,” arXiv preprint
arXiv:1910.03193, 2019.

M. Raissi, P. Perdikaris, and G. E. Karniadakis,
“Physics-informed neural networks: A deep learn-
ing framework for solving forward and inverse
problems involving nonlinear partial differential
equations,” Journal of Computational physics,
vol. 378, pp. 686-707, 2019.

S. Pan and K. Duraisamy, “Long-time predictive
modeling of nonlinear dynamical systems using
neural networks,” Complexity, vol. 2018, no. 1,
p- 4801012, 2018.

K. Michatowska, S. Goswami, G. E. Karni-
adakis, and S. Riemer-Sgrensen, “Neural operator
learning for long-time integration in dynamical
systems with recurrent neural networks,” arXiv
preprint arXiv:2303.02243, 2023.

N. Mohajerin and S. L. Waslander, “Multistep
prediction of dynamic systems with recurrent
neural networks,” IEEE transactions on neural
networks and learning systems, vol. 30, no. 11,
pp- 3370-3383, 2019.

C. K. Chui, G. Chen, et al., Kalman filtering.
Springer, 2017.

M. 1. Ribeiro, “Kalman and extended kalman
filters: Concept, derivation and properties,” Insti-
tute for Systems and Robotics, vol. 43, no. 46,
pp.- 3736-3741, 2004.

M. Mirtaba, M. Jeddi, A. Nikoofard, and Z.
Shirmohammadi, “Design and implementation of
a low-complexity flight controller for a quadro-
tor vav,” International Journal of Dynamics and
Control, vol. 11, no. 2, pp. 689-700, 2023.

W. Ditto and T. Munakata, “Principles and appli-
cations of chaotic systems,” Communications of
the ACM, vol. 38, no. 11, pp. 96-102, 1995.

T. Rozario, A. Trivedi, and A. Goel, “A tutorial on
neural networks and gradient-free training,” arXiv
preprint arXiv:2211.17217, 2022.

B. M. Wilamowski, N. J. Cotton, O. Kaynak,
and G. Dundar, “Computing gradient vector and
jacobian matrix in arbitrarily connected neural
networks,” IEEE Transactions on Industrial Elec-
tronics, vol. 55, no. 10, pp. 3784-3790, 2008.

	Introduction
	Problem Formulation
	Neural Network Model
	Neural Filter

	Numerical Experiments
	Simple Pendulum
	Van Der Pol
	Lorenz System
	Double Inverted Pendulum System

	Conclusions
	Appendix
	Jacobian of the Neural Network

