
ar
X

iv
:2

40
9.

13
65

4v
2

 [
cs

.L
G

]
 7

 J
un

 2
02

5

A Novel Neural Filter to Improve Accuracy of

Neural Network Models of Dynamic Systems

Parham Oveissi, Turibius Rozario, Ankit Goel

Abstract— The application of neural networks in mod-
eling dynamic systems has become prominent due to their
ability to estimate complex nonlinear functions. Despite

their effectiveness, neural networks face challenges in long-
term predictions, where the prediction error diverges over
time, thus degrading their accuracy. This paper presents
a neural filter to enhance the accuracy of long-term state
predictions of neural network-based models of dynamic
systems. Motivated by the extended Kalman filter, the
neural filter combines the neural network state predic-
tions with the measurements from the physical system to
improve the estimated state’s accuracy. The neural filter’s
improvements in prediction accuracy are demonstrated
through applications to four nonlinear dynamical systems.
Numerical experiments show that the neural filter signifi-
cantly improves prediction accuracy and bounds the state
estimate covariance, outperforming the neural network
predictions. Furthermore, it is also shown that the accuracy
of a poorly trained neural network model can be improved
to the same level as that of an adequately trained neural
network model, potentially decreasing the training cost and
required data to train a neural network.

keywords: neural networks, dynamical systems, neu-

ral network modeling, state estimation.

I. INTRODUCTION

The use of neural networks has surged due to ad-

vances in computational power and extensive research

within the machine learning community. Neural net-

works, with their inherently nonlinear activation func-

tions, are adept at estimating complex nonlinear func-

tions [1], [2], making them highly suitable for modeling

dynamic systems and predicting future states. These

capabilities have broad applications, such as modeling

nonlinear oscillators [3], controlling nonlinear dynam-

ical systems [4], [5], predicting weather phenomena

[6], and enhancing medical diagnostics [7]. Modeling

dynamic systems is crucial across various engineering

and scientific disciplines. Neural networks offer a pow-

erful alternative to traditional parametric methods by

Parham Oveissi is a graduate student in the Department of Me-
chanical Engineering, University of Maryland, Baltimore County, 1000
Hilltop Circle, Baltimore, MD 21250. parhamo1@umbc.edu

Turibius Rozario is an undergraduate student and a Meyerhoff
Scholar in the Department of Mechanical Engineering, University
of Maryland, Baltimore County, 1000 Hilltop Circle, Baltimore, MD
21250. s175@umbc.edu

Ankit Goel is an Assistant Professor in the Department of Me-
chanical Engineering, University of Maryland, Baltimore County,1000
Hilltop Circle, Baltimore, MD 21250. ankgoel@umbc.edu

learning complex system behaviors directly from data.

For instance, a procedure developed for identifying non-

linear dynamic systems using artificial neural networks

demonstrated the capability to effectively predict the

response of a damped Duffing oscillator under vary-

ing excitations, highlighting the neural network’s high-

fidelity modeling potential [3]. [4] introduced models for

nonlinear dynamical systems identification and control,

emphasizing the feasibility of neural networks in han-

dling more complex systems and introducing a combined

linear-neural network controller structure. More recently,

universal approximation property of neural networks has

been leveraged to learn functions from small datasets.

A significant reduction in generalization error and high-

order error convergence in dynamic systems and PDEs

was reported in [8]. Physics-informed neural networks

(PINNs) that integrate physical laws into neural network

training to ensure that the models adhere to underlying

physical principles have also been explored [9].

Despite neural networks’ impressive capabilities, a

significant challenge arises in the context of long-term

predictions, where the error between the true system

behavior and the neural network approximation tends

to accumulate over time. To address the issue of long-

term prediction errors, various approaches have been

proposed. A technique based on regularization to im-

prove robustness and reduce error accumulation was

investigated in [10]. Recurrent neural networks have

been investigated to capture temporal dependencies to

reduce error accumulation for both interpolation and

extrapolation tasks [11], [12].

The key reason for the prediction error’s divergence is

that the design and training of the neural network-based

model do not stabilize the state error dynamics. Moti-

vated by the Kalman filter [13], where a feedback signal

from the physical system stabilizes the error dynamics,

this paper presents a neural filter to arrest the divergence

of the error in the neural network state predictions. The

main contribution of this work is thus the extension of

the extended Kalman filter [14], [15] to the neural filter

and the demonstration of the improvement in the long-

term accuracy of the neural filter state predictions.

The paper is organized as follows. Section II formu-

lates the state-estimation problem and presents the neu-

ral filter. Section III applies the neural filter to estimate

https://arxiv.org/abs/2409.13654v2

states in four typical dynamical systems. Finally, Section

IV summarizes the paper.

II. PROBLEM FORMULATION

This section formulates notation and terminology as-

sociated with the state-estimation problem and presents

the neural filter. Consider the nonlinear system

xk+1 = f
(

xk, uk

)

+ wk, (1)

yk = g
(

xk

)

+ vk, (2)

where, for all k ≥ 0, xk is the state, uk is the input to the

system, yk is the measured output of the system, f, g,
are real-valued vector functions, wk ∼ N (0, Qk) is the

process noise, vk ∼ N (0, Rk) is the measurement noise,

and Qk and Rk are process and measurement covariance

matrices, respectively. The objective is to propagate the

system states xk by approximating the function f with a

neural network, and then correct these predictions using

the available measurements yk from the system. In this

work, we assume that the function g is known.

A. Neural Network Model

Consider a dynamic system

λx(t) = F(x(t), u(t)), (3)

where x and u are the state of the system and the

input to the system, respectively, F is the dynamics

of the system, and the operator λ is either a derivative

or a forward-shift operator, that is, in continuous-time

systems, λx = ẋ and, in discrete-time systems, λx(t) =
x(t + 1). The objective is approximate the state of (3)

with a discrete dynamic system

x̂k+1 = NN(x̂k, uk), (4)

where x̂k is the estimated state of the system and NN
denotes a neural-network approximation of the system,

which is constructed as shown below. Note that k is the

iteration number and is related to continuous time t as

t = kTs, where Ts is the discretization timestep.

To generate the training data to construct the neural-

network model, we solve (3) from t = 0 to t = Ts. For

example, in the case of continuous time system, note

that

x(Ts) = x(0) +

∫ Ts

0

F(x(τ), u(τ))dτ. (5)

The training data consists of randomly generated sam-

ples of x(0) and u(0) and the corresponding x(Ts),
computed using (5). In this work, we use MATLAB’s

ode45 routine to compute x(Ts). The trained neural

network, denoted by NN(x), can thus be used to

propagate the state at a time instant t to t + Ts using

(4).

In this work, we use the MATLAB routine dlnetwork

to define the neural network architecture. To train the

neural-network model NN with the training data, which

includes the input data {x(0), u(0)} and the output

data {x(T)}, we employ the Adam optimizer using the

MATLAB routine adamupdate in a mini-batch training

setup. A small portion of the training data is reserved

as a validation dataset throughout the training process.

B. Neural Filter

Let NN(x, u) be a neural network approximation of

the function f. Then, the neural filter is

x̂k+1|k = NN
(

x̂k|k, uk

)

, (6)

x̂k+1|k+1 = x̂k+1|k +Kk+1

(

yk+1 − g(x̂k+1|k)
)

, (7)

where x̂k+1|k is the prior estimate at step k+1, x̂k+1|k+1

is the posterior estimate at step k + 1, and the neural

filtering correction gain Kk+1 is given by

Kk+1 = Pk+1|kC
T
k+1(Ck+1Pk+1|kC

T
k+1 +Rk+1)

−1,
(8)

where the prior covariance matrix Pk+1|k is given by

Pk+1|k = AkPk|kA
T
k +Qk, (9)

and the state transition matrix Ak and the measurement

matrix Ck are given by

Ak =
∂NN

∂x

∣

∣

∣

∣

∣

x̂k|k,uk

, Ck =
∂g

∂x

∣

∣

∣

∣

∣

x̂k|k,uk

. (10)

The computation of the Jacobian of a neural network is

described in Appendix V-A.

Finally, the posterior covariance matrix Pk+1|k+1 is

given by

Pk+1|k+1 = (I −Kk+1Ck+1)Pk+1|k (11)

Remark 2.1: Note that, since the neural filter is moti-

vated by the extended Kalman filter, the matrices Pk+1|k

and Pk+1|k+1 are similar to the prior and posterior

covariance matrices in EKF. Therefore,

Pk+1|k ≈ E[ek+1|ke
T
k+1|k], (12)

Pk+1|k+1 ≈ E[ek+1|k+1e
T
k+1|k+1], (13)

where the prior error ek+1|k and the posterior error

ek+1|k+1 are defined as

ek+1|k
△
= xk+1 − x̂k+1|k, (14)

ek+1|k+1

△
= xk+1 − x̂k+1|k+1. (15)

Remark 2.2: Since Pk|k is the covariance of the pos-

terior state-estimation error, that is, E[ek|ke
T
k|k,] the

trace of Pk|k is approximately equal to the square of

the 2-norm of the posterior state-estimation error, that

is, E[eT
k|kek|k.]

https://www.mathworks.com/help/matlab/ref/ode45.html
https://www.mathworks.com/help/deeplearning/ref/dlnetwork.html#d126e70205
https://www.mathworks.com/help/deeplearning/ref/adamupdate.html

Figure 1 shows the neural filter architecture, which

incorporates the available measurements from the phys-

ical system to improve the prediction accuracy of the

neural network-based model of the physical system.

Neural Filter

uk

Physical
System

(2)

Neural network
Model (6)

Output
Model (2)

Neural Filter
Correction (7)

yk

x̂k+1|k

x̂k+1|k+1

ŷk

Fig. 1: Neural filter architecture.

III. NUMERICAL EXPERIMENTS

This section presents several case studies to demon-

strate the performance of the neural filter. In particular,

we consider the simple pendulum, the Van der Pol

oscillator, the Lorenz system, and the double pendulum

system to demonstrate that the neural filter maintains

prediction accuracy over a long horizon. Note that the

Lorenz system and the double pendulum system are

chaotic, making long-term predictions especially chal-

lenging due to their sensitivity to initial conditions,

where small changes can lead to vastly different behav-

iors [16].

A. Simple Pendulum

Consider the simple pendulum

ℓθ̈ + g sin θ = 0. (16)

Defining x
△
=

[

θ θ̇
]T

, the simple pendulum (16) can

be written in the state-space form (3), where

f(x)
△
=

[

x2

− g

ℓ
sin(x1)

]

. (17)

The output is assumed to be a noisy measurement of the

angle θ, that is,

yk =
[

1 0
]

xk + vk, (18)

where vk ∼ N (0, σ2
vI2) represents zero-mean Gaussian

noise. In this example, we set σv = 0.1.

The training data consists of 15,000 samples of

x(0) ∈

[

U [−π/2, π/2]
U [−5, 5]

]

. Using MATLAB’s ode45

routine, x(0.1) is computed according to (5). In this

work, we use 80 % of the data to train the model, and

the remaining 20 % are used for validation during the

training process.

The neural network architecture used to approximate

the simple pendulum is shown in Figure 2. In particular,

the neural network NN1 consists of an input layer with

a dimension of 2, a single hidden layer containing 10

neurons, and an output layer with a dimension of 2.

The hidden layer uses the rectified linear unit (ReLU)

activation function, while the output layer uses a linear

activation function. The Adam optimizer is used for

training the neural network. Training is performed with

a batch size of 32, and validation is conducted every 30

iterations. To assess the robustness of the neural filter

against variations in neural network complexity, we also

consider a significantly simpler architecture NN2. This

network consists of an input layer with a dimension of 2,

a single hidden layer with 2 neurons, and an output layer

with a dimension of 2. The hidden layer employs the

ReLU activation function, while the output layer utilizes

a linear activation function. Figure 3 shows the smoothed

training and validation loss on a logarithmic scale during

the training process for both trained networks NN1 and

NN2.

x1(0)

x2(0)

x1(0.1)

x2(0.1)

Fig. 2: Neural network architecture used to approximate the simple
pendulum system.

0.5 1 1.5 2 2.5 3 3.5

Iteration 104

10-3

10-2

10-1

L
o
s
s

NN
1
 Training Loss

NN
1
 Validation Loss

NN
2
 Training Loss

NN
2
 Validation Loss

Fig. 3: Simple pendulum. Training and validation loss on a logarith-
mic scale to approximate the simple pendulum system.

Next, the trained neural networks and the correspond-

https://www.mathworks.com/help/matlab/ref/ode45.html

ing neural filters are used to predict the state of the pen-

dulum system. In particular, we set x(0) =
[

π
3

1
]T

.
In both of the neural filter, we set P (0) = 10−4 × I2,
where I2 is the 2 by 2 identity matrix and x̂0|0 = 0.

Note that x̂0|0 = 0 reflects the absence of knowledge

of the state of the dynamic system in the neural filter.

However, since the neural network models NN1 and

NN2 have no external correction, we initialize them

with the same initial conditions as the true system, that

is, x̂0 = 0 in the neural network model. Figures 4 and

5 show the predicted states using the neural network

(subfigures in the left column) and the corresponding

neural filter (subfigures in the right column) using NN1

and NN2, respectively.

Note that, in both cases, the state predictions using

the neural network degrade over time, as shown by

the increasing state error norm ‖ek|k‖ and the trace of

the corresponding state covariance trPk|k. On the other

hand, the state predictions using the neural filter remain

accurate over time, as shown by the bounded state error

norm ‖ek|k‖ and the trace of the corresponding state

covariance trPk|k. Furthermore, the NN1 and NN2

estimates diverge even with the correct initialization,

whereas the neural filter estimates converge despite the

complete lack of the system’s initial state. Although NN2

is a much simpler model and shows noticeably poorer

performance than NN1 in open-loop state estimation,

the neural filter in both instances operates quite simi-

larly.

-2

0

2

-5

0

5

0 100 200 300 400 500

10
-3

10
-1

10
1

10
3

0 100 200 300 400 500

Fig. 4: Simple pendulum. State predictions using the neural network
and the neural filter using NN1.

B. Van Der Pol

Consider the Van Der Pol oscillator

q̈ − µ(1− q2)q̇ + q = 0. (19)

-2

0

2

-5

0

5

0 100 200 300 400 500

10
-3

10
-1

10
1

10
3

0 100 200 300 400 500

Fig. 5: Simple pendulum. State predictions using the neural network
and the neural filter using NN2.

Defining x
△
=

[

q q̇
]T

, the Van der Pol oscillator (19)

can be written in the state-space form (3), where

f(x)
△
=

[

x2

µ(1− x1
2)x2 − x1

]

. (20)

The measurement model for this example is defined

as follows

yk =
[

1 0
]

xk + vk, (21)

where vk ∼ N (0, σ2
vI2) represents zero-mean Gaussian

noise. For this example, we specify σv = 0.1.

The training data consists of 30,000 samples of

x(0) ∈

[

U [−5, 5]
U [−5, 5]

]

. Using MATLAB’s ode45 routine,

x(0.1) is computed according to (5). In this work, we use

80 % of the data to train the model, and the remaining

20 % are used for validation during the training process.

The neural network architecture used to approximate

the Van der Pol oscillator is shown in Figure 6. In

particular, the neural network consists of an input layer

with a dimension of 2, two hidden layers containing

10 neurons each, and an output layer with a dimension

of 2. Both hidden layers use the rectified linear unit

(ReLU) activation function, while the output layer uses

a linear activation function. The Adam optimizer is used

for training the neural network. Training is performed

with a batch size of 32, and validation is conducted every

30 iterations. Figure 7 shows the smoothed training and

validation loss on logarithmic scale during the training

process.

Next, the trained neural network and the neural filter

are used to predict the state of the Van der Pol oscillator.

In particular, we set x(0) =
[

2 1
]T

. In the neural

filter, we set P (0) = 10−4 × I2, where I2 is the 2 by

2 identity matrix. Figure 8 shows the predicted states

using the neural network (subfigures in the left column)

and the neural filter (subfigures in the right column).

Note that the state predictions using the neural network

https://www.mathworks.com/help/matlab/ref/ode45.html

x1(0)

x2(0)

x1(0.1)

x2(0.1)

Fig. 6: Neural network architecture used to approximate the Van der
Pol oscillator.

1 2 3 4 5 6 7

104

10-2

10-1

Training Loss

Validation Loss

Fig. 7: Van der Pol oscillator. Smoothed training and validation loss
on logarithmic scale during the training process.

degrade over time, as shown by the increasing state

error norm ‖ek|k‖ and the trace of the corresponding

state covariance trPk|k. On the other hand, the state

predictions using the neural filter remain accurate over

time, as shown by the bounded state error norm ‖ek|k‖
and the trace of the corresponding state covariance

trPk|k.

C. Lorenz System

Consider the Lorenz system

ẇ = σ(y − w),

ẏ = w(ρ− z)− y,

ż = wy − βz. (22)

Defining x
△
=

[

w y z
]T

, the Lorenz system (22) can

be written in the state-space form (3), where

f(x)
△
=





σ(x2 − x1)
x1(ρ− x3)− x2

x1x2 − βx3



 . (23)

The measurement model for this example is defined

as follows

yk =
[

1 0 0
]

xk + vk, (24)

-2

0

2

4

-2

0

2

4

0 100 200 300 400 500

10
-3

10
-1

10
1

0 100 200 300 400 500

Fig. 8: Van der Pol oscillator. State predictions using the neural
network and the neural filter.

where vk ∼ N (0, σ2
vI3) represents zero-mean Gaussian

noise. For this example, we specify σv = 0.1.

The training data consists of 100,000 samples of

x(0) ∈





U [−15, 15]
U [−15, 15]
U [−15, 15]



 . Using MATLAB’s ode45 rou-

tine, x(0.01) is computed according to (5). In this

work, we use 80 % of the data to train the model, and

the remaining 20 % are used for validation during the

training process.

The neural network architecture used to approximate

the Lorenz system is shown in Figure 9. In particular,

the neural network consists of an input layer with

a dimension of 3, three hidden layers containing 10

neurons each, and an output layer with a dimension

of 3. All the hidden layers use the rectified linear unit

(ReLU) activation function, while the output layer uses a

linear activation function. The Adam optimizer is used

for training the neural network. Training is performed

with a batch size of 32, and validation is conducted every

30 iterations. Figure 10 shows the smoothed training and

validation loss on logarithmic scale during the training

process.

Next, the trained neural network and the neural filter

are used to predict the state of the Lorenz system. In

particular, we set x(0) =
[

−6.13 1.78 1.67
]T

. In

the neural filter, we set P (0) = 10−4 × I3, where

I3 is the 3 by 3 identity matrix. Figure 11 shows the

predicted states using the neural network (subfigures

in the left column) and the neural filter (subfigures in

the right column). Note that the state predictions using

the neural network degrade over time, as shown by

the increasing state error norm ‖ek|k‖ and the trace of

the corresponding state covariance trPk|k. On the other

hand, the state predictions using the neural filter remain

accurate over time, as shown by the bounded state error

norm ‖ek|k‖ and the trace of the corresponding state

covariance trPk|k.

https://www.mathworks.com/help/matlab/ref/ode45.html

x1(0)

x2(0)

x3(0)

x1(0.01)

x2(0.01)

x3(0.01)

Fig. 9: Neural network architecture used to approximate the Lorenz
system.

0.5 1 1.5 2

105

10-2

10-1

100 Training Loss

Validation Loss

Fig. 10: Lorenz system. Smoothed training and validation loss on
logarithmic scale during the training process.

D. Double Inverted Pendulum System

As shown in Figure 12, a planar double simple

pendulum consists of particles y1 and y2 with masses

m1 and m2, respectively. The particle y1 is connected

to a frictionless pin joint at the point w in the ceiling by

means of the massless link L1 with length ℓ1, and the

particle y2 is connected by a frictionless pin joint at y1
to the first link by means of the massless link L2 with

length ℓ2. The external torque τext is applied to link L1.

L1

L2

w

y1

y2

θ1

θ2
⇀
g

Fig. 12: Planar double simple pendulum.

-10

0

10

-20

0

20

10
20
30
40
50

0 500 1000

10
-1

10
1

10
3

10
5

10
7

0 500 1000

Fig. 11: Lorenz system. State predictions using the neural network
and the neural filter.

The equations of motion of the double pendulum are

(m2 +m1)ℓ
2
1θ̈1 +m2ℓ1ℓ2(cosφ)θ̈2 = m2ℓ1ℓ2(sinφ)θ̇

2
2

− (m1 +m2)gℓ1 sin θ1 + τext,
(25)

ℓ1(cosφ)θ̈1 + ℓ2θ̈2 = −ℓ1(sinφ)θ̇
2
1 − g sin θ2,

(26)

where φ
△
= θ2 − θ1.

The equations of motion can be written compactly as

M(θ)θ̈ +D(θ, θ̇) = T, (27)

where θ
△
=

[

θ1
θ2

]

and

M(θ)
△
=

[

(m2 +m1)ℓ
2
1 m2ℓ1ℓ2(cosφ)

ℓ1(cosφ) ℓ2

]

, (28)

D(θ, θ̇)
△
=

[

−m2ℓ1ℓ2(sinφ)θ̇
2
2 + (m1 +m2)gℓ1 sin θ1

ℓ1(sinφ)θ̇
2
1 + g sin θ2

]

,

(29)

T
△
=

[

τext
0

]

. (30)

The measurement model for this example is defined

as follows

yk =

[

1 0 0 0
0 0 1 0

]

xk + vk, (31)

where vk ∼ N (0, σ2
vI4) represents zero-mean Gaussian

noise. For this example, we specify σv = 0.01.

The training data consists of 200,000 samples of

x(0) ∈









U [−π/2, π/2]
U [−0.5, 0.5]
U [−π/2, π/2]
U [−0.5, 0.5]









. Using MATLAB’s ode45

routine, x(0.01) is computed according to (5) assuming

τext = 0. In this work, we use 80 % of the data to

train the model, and the remaining 20 % are used for

validation during the training process.

https://www.mathworks.com/help/matlab/ref/ode45.html

The neural network architecture used to approximate

the double pendulum system is shown in Figure 13. In

particular, the neural network consists of an input layer

with a dimension of 4, four hidden layers containing

10 neurons each, and an output layer with a dimension

of 4. All the hidden layers use the rectified linear unit

(ReLU) activation function, while the output layer uses a

linear activation function. The Adam optimizer is used

for training the neural network. Training is performed

with a batch size of 32, and validation is conducted every

30 iterations. Figure 14 shows the smoothed training and

validation loss on a logarithmic scale during the training

process.

x1(0)

x2(0)

x3(0)

x4(0)

x1(0.01)

x2(0.01)

x3(0.01)

x4(0.01)

Fig. 13: Neural network architecture used to approximate the double
pendulum system.

0.5 1 1.5 2

105

10-3

10-2

Training Loss

Validation Loss

Fig. 14: Double pendulum. Smoothed training and validation loss on
logarithmic scale during the training process.

Next, the trained neural network and the neu-

ral filter are used to predict the state of the dou-

ble pendulum system. In particular, we set x(0) =
[

−0.235 0.267 −0.435 −0.301
]T

. In the neural

filter, we set P (0) = 10−4 × I4, where I4 is the 4 by

4 identity matrix. Figure 15 shows the predicted states

using the neural network (subfigures in the left column)

and the neural filter (subfigures in the right column).

Note that the state predictions using the neural network

degrade over time, as shown by the increasing state

error norm ‖ek|k‖ and the trace of the corresponding

state covariance trPk|k. On the other hand, the state

predictions using the neural filter remain accurate over

time, as shown by the bounded state error norm ‖ek|k‖
and the trace of the corresponding state covariance

trPk|k.

-0.5

0

0.5

-1
0
1
2

-1
-0.5

0
0.5

-2
0
2

0 500 1000
10

-510
-310
-110
110
310
5

0 500 1000

Fig. 15: Double pendulum. State predictions using the neural network
and the neural filter.

IV. CONCLUSIONS

This paper introduced a novel neural filter to improve

the accuracy of state predictions using neural network-

based models of dynamical systems. Motivated by the

extended Kalman filter, the neural filter is constructed

using the neural network-based approximation of the

dynamical system and augmenting the state prediction

by a correction step. The performance of the neural filter

is investigated using four nonlinear dynamical systems.

In particular, a simple pendulum, a Van der Pol oscilla-

tor, Lorenz system, and a double pendulum system are

considered to demonstrate the application of the neural

filter. In each case, the states predicted by the neural

filter remain close to the true states, whereas the state

estimates provided by the neural network model alone

diverge. Moreover, unlike the neural network model,

which requires precise initialization, the neural filter

state estimates latch onto true states even with zero

initialization. Furthermore, the covariance of the state

estimate given by the neural filter remains bounded,

whereas the covariance of the state estimate given by

the neural network model diverges.

V. APPENDIX

A. Jacobian of the Neural Network

Following the notation presented in [17], the output

of the neural network is given by

y = NN(x,Θ1, . . . ,Θn,Θn+1)

=ΘT
n+1Nn(Nn−1(. . . (N1(x,Θ1)),Θn−1),Θn), (32)

where N1, N2, . . . , Nn are the n neural layers of the

neural network and {Θi}ni=1 are the neural gains in each

layer.

To compute the Jacobian of the neural network func-

tion NN with respect to the input x, the output of

a neural network function is written using a recursive

formula as shown below. By denoting the input and the

output of the ith neural layer by xi and xi+1, it follows

that, for i ∈ {1, 2, . . . , n},

xi+1 = Ni(xi,Θi), (33)

where Θi ∈ R
lθi×ℓi . Note that x1

△
= x. The output of

the network is finally given by

y = S(xn+1) = ΘT
n+1xn+1, (34)

where Θn+1 ∈ R
lxn+1

×ly . Using the chain rule, it

follows that

∂NN

∂x
=

∂y

∂x
=

∂y

∂xi+1

∂xi+1

∂xi

∂xi

∂xi−1

. . .
∂x2

∂x1

= ΘT
n+1

∂Ni

∂xi

. . .
∂N1

∂x1

. (35)

More details about computing the gradients of arbitrarily

connected neural networks can be found in [18].

REFERENCES

[1] L. Song, J. Fan, D.-R. Chen, and D.-X. Zhou,

“Approximation of nonlinear functionals using

deep relu networks,” Journal of Fourier Analysis

and Applications, vol. 29, no. 4, p. 50, 2023.

[2] I. Higgins, “Generalizing universal function ap-

proximators,” Nature Machine Intelligence, vol. 3,

no. 3, pp. 192–193, 2021.

[3] S. Masri, A. Chassiakos, and T. Caughey, “Iden-

tification of nonlinear dynamic systems using

neural networks,” 1993.

[4] K. S. Narendra and K. Parthasarathy, “Neural

networks and dynamical systems,” International

Journal of Approximate Reasoning, vol. 6, no. 2,

pp. 109–131, 1992.

[5] Y. Y. Chee, P. Oveissi, J. Paredes, D. S. Bern-

stein, and A. Goel, “Performance comparison of

adaptive autopilot architectures for multicopter

stabilization and trajectory tracking,” in AIAA

SCITECH 2024 Forum, 2024, p. 1391.

[6] K. Lin, X. Li, Y. Ye, et al., “Spherical neural

operator network for global weather prediction,”

IEEE Transactions on Circuits and Systems for

Video Technology, 2023.

[7] L. N. Yasnitsky, A. A. Dumler, F. M. Cherepanov,

V. L. Yasnitsky, and N. A. Uteva, “Capabilities of

neural network technologies for extracting new

medical knowledge and enhancing precise deci-

sion making for patients,” Expert Review of Pre-

cision Medicine and Drug Development, vol. 7,

no. 1, pp. 70–78, 2022.

[8] L. Lu, P. Jin, and G. E. Karniadakis, “Deep-

onet: Learning nonlinear operators for identifying

differential equations based on the universal ap-

proximation theorem of operators,” arXiv preprint

arXiv:1910.03193, 2019.

[9] M. Raissi, P. Perdikaris, and G. E. Karniadakis,

“Physics-informed neural networks: A deep learn-

ing framework for solving forward and inverse

problems involving nonlinear partial differential

equations,” Journal of Computational physics,

vol. 378, pp. 686–707, 2019.

[10] S. Pan and K. Duraisamy, “Long-time predictive

modeling of nonlinear dynamical systems using

neural networks,” Complexity, vol. 2018, no. 1,

p. 4 801 012, 2018.

[11] K. Michałowska, S. Goswami, G. E. Karni-

adakis, and S. Riemer-Sørensen, “Neural operator

learning for long-time integration in dynamical

systems with recurrent neural networks,” arXiv

preprint arXiv:2303.02243, 2023.

[12] N. Mohajerin and S. L. Waslander, “Multistep

prediction of dynamic systems with recurrent

neural networks,” IEEE transactions on neural

networks and learning systems, vol. 30, no. 11,

pp. 3370–3383, 2019.

[13] C. K. Chui, G. Chen, et al., Kalman filtering.

Springer, 2017.

[14] M. I. Ribeiro, “Kalman and extended kalman

filters: Concept, derivation and properties,” Insti-

tute for Systems and Robotics, vol. 43, no. 46,

pp. 3736–3741, 2004.

[15] M. Mirtaba, M. Jeddi, A. Nikoofard, and Z.

Shirmohammadi, “Design and implementation of

a low-complexity flight controller for a quadro-

tor uav,” International Journal of Dynamics and

Control, vol. 11, no. 2, pp. 689–700, 2023.

[16] W. Ditto and T. Munakata, “Principles and appli-

cations of chaotic systems,” Communications of

the ACM, vol. 38, no. 11, pp. 96–102, 1995.

[17] T. Rozario, A. Trivedi, and A. Goel, “A tutorial on

neural networks and gradient-free training,” arXiv

preprint arXiv:2211.17217, 2022.

[18] B. M. Wilamowski, N. J. Cotton, O. Kaynak,

and G. Dundar, “Computing gradient vector and

jacobian matrix in arbitrarily connected neural

networks,” IEEE Transactions on Industrial Elec-

tronics, vol. 55, no. 10, pp. 3784–3790, 2008.

	Introduction
	Problem Formulation
	Neural Network Model
	Neural Filter

	Numerical Experiments
	Simple Pendulum
	Van Der Pol
	Lorenz System
	Double Inverted Pendulum System

	Conclusions
	Appendix
	Jacobian of the Neural Network

